Single cell gene expression analysis in injury-induced collective cell migration.

نویسندگان

  • Reza Riahi
  • Min Long
  • Yongliang Yang
  • Zachary Dean
  • Donna D Zhang
  • Marvin J Slepian
  • Pak Kin Wong
چکیده

Collective cell behavior in response to mechanical injury is central to various regenerative and pathological processes. Using a double-stranded locked nucleic acid probe for monitoring real-time intracellular gene expression, we examined the spatiotemporal response of epithelial cells during injury-induced collective migration and compared to the blocker assay with minimal injury as control. We showed that cells ∼150 μm from the wound edge exhibit a gradient in response to mechanical injury, expressing different genes depending on the wounding process. While release of contact inhibition is sufficient to trigger the migratory behavior, cell injury additionally induces reactive oxygen species, Nrf2 protein, and stress response genes, including heat shock protein 70 and heme oxygenase-1, in a spatiotemporal manner. Furthermore, we show that Nrf2 has an inhibitory role in injury-induced epithelial-mesenchymal transition, suggesting a potential autoregulatory mechanism in injury-induced response. Taken together, our single-cell gene expression analyses reveal modular cell responses to mechanical injury, manipulation of which may afford novel strategies for tissue repair and prevention of tumor invasion in the future.

منابع مشابه

Therapeutic Efficacy Analysis of lncRNA NEAT1 Gene Knockout and Apoptosis Induction in Prostate Cancer Cell Line Using CRISPR/Cas9

Background and Objective: Long non-coding ribonucleic acid (lncRNA) has been identified as an important gene regulator and prognostic marker in various cancers. The present study aimed to investigate the effects of Nuclear Paraspeckle Assembly Transcript1 (NEAT1) gene knockout using Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR/Cas9) in PC-3 cell line. ...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Inhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics

Objective(s): Various studies have been conducted to reduce the metastatic behavior of cancerous cells. In this regard, ectopic expression of anti-metastatic microRNAs by miR-mimic and miR-restoration-based therapies could bring new insights to the field. In the present study, the consequences of co-transfecting breast cancer cell lines with miR-193b and miR-31 were investigated via invasion an...

متن کامل

Comparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid

Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...

متن کامل

Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line

Objective(s): Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. Materials an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2014